Solar Panel Integration

Grassfield High School - Mr. Thomas Spencer

Renewable energy can increase the energy efficiency of any building. With this knowledge, our group searched for a way to provide clean energy for our school, benefitting itself and the environment. Our group decided that installing solar panels on the roof would help us accomplish this goal by providing us a way to produce solar energy.

Alec Council Leon Crawford

GRASSFIELD HIGH SCHOOL

Governors

Blaize Golden Aryan Kumar Jonathan Schares

Ayush Shah Josiah Upperman

Project Goals

- Ultimately, our goal is to improve the energy efficiency of our community through the implementation of solar panels throughout the roof of our school
- However, we must first "repair" the structural integrity of our roof, as there is a significant amount of puncture and erosion
- The utilization of solar energy will negate our school's energy inefficiency and sustain additional power

		C	SRASSFIELD H	IGH SCHOO	DL ELE	CTRICITY USA	GE AND			
		C	COST HISTORY							
		F	Read Date	Bill Days		Total kWh	2018			
			12/7/2018		32	281,400	1			
			11/5/2018		31	309,000				
			10/5/2018		29	369,000				
			9/6/2018		30	343,800				
			8/7/2018		29	256,200	Total kWh:			
			7/9/2018		32	292,800	3,694,800			
			6/7/2018		30	371,400				
			5/8/2018		29	280,800				
			4/9/2018		32	264,000	Total Expense:			
			3/8/2018		29	277,200	\$443,768			
			2/7/2018		30	297,000				
			1/8/2018		31	352,200				
Read Date	Bill Days	Total kWh	2017:				Read Date	Bill Days	Total kWh	2019
12/8/2017	32	2 301,200					12/6/2019	9	32 285,60	0
11/6/2017	3	1 337,200					11/4/2019)	31 304,80	0
10/6/2017	21	351,000					10/4/2019	9	28 347,40	0
9/7/2017	3	1 354.000					9/6/2019)	30 309,00	0
8/7/2017	3	1 300 600	Total kWh:				8/7/2019	9	29 266,40	0 Total kWh:
7/7/2017	20	323,400	3 730 8	00			7/9/2019)	32 280,80	0 3,556,80
6/0/2017	21	262,400	0,700,0	.00			6/7/2019)	30 373,20	0
0/0/2017	50	0 005,000					5/8/2019)	30 297,60	0
5/9/2017	32	2 345,000	-				4/8/2019	9	31 271,20	0 Total Expense:
4/7/2017	29	334,200	Totatl Expens	e:			3/8/2019)	29 263,40	0 \$632,75
3/9/2017	29	9 339,000	\$418,9	17			2/7/2019)	30 311,40	0
2/8/2017	30	390,600					1/8/2019)	32 246,00	0

Stage 1: Roof Repair

Our team decided to go around our high school and pinpoint all of the roof damage on the ceilings. We took photos of those damages as well.

Roof Leaks

Roof Leak Effects

Damaged Ceiling Tile Locations

- Room 212
- Room 215

- Room 402
- Black Box Theater

- Outside of 213 & 212
- Main Circle

Stage 2: Solar Integration

In order to install solar panels, our team would first have to do the following:

- Learn about solar energy
- Understand how panels work
- Brainstorm how it would affect our school
- Find out how we could be provided with panels
- Ensure that the roof can withstand the added weight

How Does Solar Work?

- Photovoltaic Cells cover the entire panel
- Sunlight is converted directly into electricity as it hits the cells
- Sunlight is composed of photons, particles of solar energy
- After enough energy is absorbed, electrons are dislodged
- Electrons create voltage potential that connects to circuit

PROS

- Renewable energy
- Save money
- Reduced carbon footprint
- Low Maintenance

• Hefty equipment

Costly

Weather dependent

• Takes up a lot of space

CONS

Community Interactions

Once we finalized the idea and what we are going to do for our project we put together a meeting with engineers from Virginia Natural Gas and some representatives from the Chesapeake School Plants to promote our project and to be able to get feedback on how to reach our goal.

Community Interactions

We decided that our next step was to see where the solar panels would come from and how they would be installed. This is when we were introduced to Suntribe Solar, a solar panel company in our area. We found out that with a Power Purchase Agreement (PPA), we would be able to have solar panels installed without any cost to the school. We then took it a step further by asking Suntribe Solar to conduct a cost benefit analysis for our school if we had solar panels.

Cost Benefit Analysis and Helioscope: provided by Sun Tribe Solar

4 Annual Production

	Description	Output	% Delta
Irradiance (kWh/m ²)	Annual Global Horizontal Irradiance	1,569.3	
	POA Irradiance	1,686.9	7.5%
	Shaded Irradiance	1,659.8	-1.6%
	Irradiance after Reflection	1,607.9	-3.1%
	Irradiance after Soiling	1,591.8	-1.0%
	Total Collector Irradiance	OutputI Horizontal Irradiance1,569.3POA Irradiance1,686.9Shaded Irradiance1,659.8diance after Reflection1,607.9Irradiance after Soiling1,591.8Collector Irradiance2,947,791.8Nameplate2,927,215.1Il Temperature Derate2,819,878.8Output After Mismatch2,815,904.6Optimizer Output2,768,142.8Constrained DC Output2,719,294.1Inverter Output2,664,100.0Energy to Grid2,637,460.0	0.0%
Energy (kWh)	Nameplate	2,947,791.8	
	Output at Irradiance Levels	2,927,215.1	-0.7%
	Output at Cell Temperature Derate	2,819,878.8	-3.7%
	Output After Mismatch	2,815,904.6	-0.1%
	Optimizer Output	2,776,425.3	-1.4%
	Optimal DC Output	2,768,142.8	-0.3%
	Constrained DC Output	2,719,294.1	-1.8%
	Inverter Output	2,664,100.0	-2.0%
	Energy to Grid	2,637,460.0	-1.0%

Works Cited

Administrator. (2020, March 1). Photovoltaic Solar Cell Turns Photons into Electrons. Retrieved March 5, 2020, from

http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-turns-photons-into-electrons.html

SunPower.

(2019, November 18). What is Solar Energy and How Do Solar Panels Work?

Retrieved from

https://us.sunpower.com/what-solar-energy-and-how-do-solar-panels-work

SunTribe Solar. (n.d.). Retrieved from https://suntribesolar.com/

Toothman,

J., & Aldous, S. (2020, January 27). How Solar Cells Work. Retrieved from

https://science.howstuffworks.com/environmental/energy/solar-cell1.htm